A general construction of barycentric coordinates over convex polygons
نویسندگان
چکیده
Barycentric coordinates are unique for triangles, but there are many possible generalizations to convex polygons. In this paper we derive sharp upper and lower bounds on all barycentric coordinates over convex polygons and use them to show that all such coordinates have the same continuous extension to the boundary. We then present a general approach for constructing such coordinates and use it to show that the Wachspress, mean value, and discrete harmonic coordinates all belong to a unifying one-parameter family of smooth three-point coordinates. We show that the only members of this family that are positive, and therefore barycentric, are the Wachspress and mean value ones. However, our general approach allows us to construct several sets of smooth five-point coordinates, which are positive and therefore barycentric.
منابع مشابه
Barycentric coordinates for convex sets
In this paper we provide an extension of barycentric coordinates from simplices to arbitrary convex sets. Barycentric coordinates over convex 2D polygons have found numerous applications in various fields as it allows smooth interpolation of data located on vertices. However, no explicit formulation valid for arbitrary convex polytopes has been proposed to extend this interpolation in higher di...
متن کاملQuadratic serendipity finite elements on polygons using generalized barycentric coordinates
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence....
متن کاملPower coordinates: a geometric construction of barycentric coordinates on convex polytopes
We present a full geometric parameterization of generalized barycentric coordinates on convex polytopes. We show that these continuous and non-negative coefficients ensuring linear precision can be efficiently and exactly computed through a power diagram of the polytope’s vertices and the evaluation point. In particular, we point out that well-known explicit coordinates such as Wachspress, Disc...
متن کاملMaximum Entropy Coordinates for Arbitrary Polytopes
Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle’s vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polyt...
متن کاملOn the injectivity of Wachspress and mean value mappings between convex polygons
Wachspress and mean value coordinates are two generalizations of triangular barycentric coordinates to convex polygons and have recently been used to construct mappings between polygons, with application to curve deformation and image warping. We show that Wachspress mappings between convex polygons are always injective but that mean value mappings can fail to be so in extreme cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 24 شماره
صفحات -
تاریخ انتشار 2006